
Evidence Flow Graph Methods
for Validation and Verification

of Expert Systems

Report IMP8809

Final Report on NASA Grant NAG-I-809

Lee A. Becker

Peter G. Green

Jayant Bhatnagar

Intelligent Machines Project

Artificial Intelligence Research Group

Worcester Polytechnic Institute

Worcester, Mass. 01609

Page 2

Evidence Flow Graph Methods
for Validation and Verification

of Expert Systems

Lee A. Becket
Peter G. Green

Jayant Bhatnagar

ABSTRACT

This final report describes the results of an investigation into
the use of evidence flow graph techniques for performing validation

and verification of expert systems. This was approached by

developing a translator to convert horn-clause rule bases into

evidence flow graphs, a simulation program, and methods of

analysis. These tools were then applied to a simple rule base

which contained errors. It was found that the method was capable

of identifying a variety of problems, for example that the order of

presentation of input data or small changes in critical parameters

could affect the output from a set of rules.

Page 3

TABLE OF CONTENTS

i. Introduction 4

2. A Framework for Validating Expert Systems 8

3. Knowledge Level Verification for a Rule-based Representation... 12

3.a. The Knowledge Representation to Evidence Flow Graph
Translator ... 12

3.b. The Simulator .. 16

3.c. The Post-Processor ... 23

4. Kinds of Testing .. 23

5. Results of the Project .. 25

6. Conclusions ... 29

Appendices .. 32

References .. 44

_ndu7

aq&

:oa_

• pa_=aua6 aae s_ndano IT_un suo_naaxa ain_ s:a_6_=_ _aep

q3Tq_ u_ ([_DY) SaT_:ado=d _oi_ _p q_ qde=6 e s_ _Inse=

• Z ajn6_ u T u_oqs se 'ss_aoad atria =aq_oue 9o uoT_naaxa aq_

=o aa_nos IeU=a_xa ue moa_ _aq_T_ 'aseq _ep aq_ o_u_ _ep 9o

_e_s_s _edx_ eidmTS _ :I e]n_T_

IONE EDMEHEEt{I

"I a=n6_

u_ u_oqs s_ euT6ua a=ua]_Zu_ u_ pue 'aseq _%_p e 'saIn_ Zo _as e _o

%s_suo_ sma_sAs _]adxa aIdm_s -s_a_sAs _edxa Zo uo_%_T:a_ pue

uo_p_leA 6u_o_ed _o_ sanb_uqaa_ qd_6 _oI_ a_uap_a _o asn eq_

o_u_ uo_eB_saAu_ ue _o s_Insa] aq_ saq_asap _]ode_ IeU_7 s_q&

NOi&D_QOH&NI "I

_e6eu_qS _ueAe_

uaa]O "D]a%aH

_a_DaS "_ eeq

sma_s£s _=ad×s _o

uoT_e=_aaA pue uoT_epTieA ao_

spo_a_ _d_D _oI_ aDuap_A_

aS_H

Page 5

2a: An Evidence Flow Graph

Input__

Messag_ _e_

Decisionprocess(DP) executionistriggered by

the arnvai of messages travelling along arcs.

2be A Simple Ru/e-based Expert Syste.m

Rule 1: ira and B thenC

Rude 2: If D and E then F

Rule 3: If C mad F then G

2c,: Rules mapped ontoevidence flOWgraph

DPI:

DF'Z:

DP3:

A

D

E

C

F

DP Defimdons

When A and B arrive send C _o DP3

W%en D md E arrive send F _o DP3

W_en C and F arrive ou_ut G

Figure 2: Transformadoa of a Rule-Based Expert System

into an Evidence Flow Graph

Page 6

The potential importance of evidence flow graphs for V&V is

twofold. First, the flow graph representation makes it possible to

simulate the actions of the rules using discrete event simulation

tools developed for analyzing complex systems. This opens up the

possibility of performing monte-carlo performance tests under a

wide variety of input values and timings. Second, the flow graph

representation is independent of the inference engine and offers

the potential for validating "portable" sets of rules which will

work under any rule execution sequence imposed by an inference

engine. This is also very significant when it is determined that

correct operation is dependent on the inference

case the rules and inference engine must

controlled as a unit.

engine, in which

be validated and

The principal purpose of the research reported here was to

determine whether evidence flow graph techniques would be

potentially useful in aiding with the validation and verification

of expert systems. This was approached by developing:

a) A translator to translate simple horn-clause rule bases into the

evidence flow graph representation developed by Chisvin (CHI88)

based on the work of Michalson (MIC88).

b) A simulation program

analyze the performance

conditions.

written in SIMSCRIPT

of the flow graph

(RUS83,LAW84) to

under a variety of

c) Methods for analysis which attempted to identify problems with

rule execution by examining the output of the simulation program.

Page 7

These tools were then applied to a simple rule base which contained

errors and it was found that the method was capable of identifying

problems, although it was evident that a much more sophisticated

results analysis program will be needed if this technique is to be

used on a large scale system.

It was found that the order of presentation of input data can

affect the output from a set of rules. By corollary, the order in

which the inference engine executes the rules may affect the

output. This can cause problems when undesired outputs are

produced before all the data is available or before all possible

rules have been executed. It was also found possible to affect the

resultant output by making small changes to critical parameters.

As a result of this investigation we have determined that evidence

flow graph techniques can be used to find problems in rule based

expert systems and that these techniques therefore have a place as

part of the evaluation regime for the validation and verification

of expert systems. Some of the faults found using evidence flow

graph techniques, such as circular reasoning and unreachable

conclusions, could be determined by other methods

(SUW82,NGU85,NGU87,STA87,BEL87,JOH88). Some problems, such as

critical sensitivity to parameters or the timing of data inputs,

are uniquely suited to flow graph simulation techniques as is the

determination of whether the rules are valid for any rule firing

order.

To date experiments have been limited to simple horn-clause rule

sets with most of the post simulation analyses being done by hand.

Page 8

To make evidence flow graph techniques practically useful much work

remains to be done. First, the work of Michalson (MIC88) needs to

be extended to cover the translation of commonly used expert system

shell paradigms into evidence flow graphs. Then some work needs to

be done to build the software infrastructure to allow the

automation of monte-carlo sensitivity and data timing simulations.

Finally it is evident that an intelligent post processing program

will be needed to find problems in the mass of data produced by the

simulations. This program will probably be an expert system itself

with knowledge about how to find faults from the results of the

simulations.

This report presents a framework for validating expert systems in

section 2. In section 3 the conversion of rules to evidence flow

graphs is described followed by a description of the simulation

program. Section 4 discusses the kinds of testing supported by the

evidence flow graph approach and section 5 discusses the results,

given in detail in the appendices, of the tests performed during

this reseach. Finally in section 6, the report concludes with a

summary of the results obtained to date and a favorable prognosis

for the future use of these techniques in the validation and

verification of expert systems.

2. A FRAMEWORK FOR VALIDATING EXPERT SYSTEMS

Figure 3 depicts our framework for the development of a validated

expert system. One important feature of our approach is that the

validation and verification is divided into a set of distinct

processes. Performance analysis and verification takes place first

Page 9

at the knowledge level, then again after information about the

execution envirnoment has been incorporated. This is followed by a

hardware failure effects analysis before testing in a simulated

real-world environment. One cannot just verify a knowledge base.

If the rule base is not invariant over all control strategies, then

this must be known, and the rule base and control regime must be

validated and verified as a pair. In addition, any modification to

either the rule base or the control regime requires that the pair

be revalidated. It is obvious that if the rule base were invariant

over all control strategies, the control regime could be changed

and revalidation would not be necessary. This would support

portability.

Evidence Flow Graphs were developed at WPI as a representation for

rule-based, Hearsay/Blackboard-based, and communication expert

object-based expert systems (GRE87,MIC87). An evidence flow graph

is a directed graph which represents decision making in terms of

the collective behavior of several independent processes. The

processes are characterized by the ability to make decisions in a

limited problem domain and by the ability to communicate the

results of these decisions by passing messages to other decision

processes. The processes may range in complexity from simple

logical operations

making paradigms.

similar to a data

process they are

decision process

"fires",

which are

OF POOR _UALII"Y

to implementations

Page i0

An evidence flow graph

flow program. As messages

stored until

of complicated decision

can execute in a manner

arrive at a decision

all the messages necessary for the

to execute are available. The process then

consuming each input message, and generating new messages

passed to those decision processes which require them.

Figure 3: The Proposed Model for Validation of Expert Systems

ORIGINAL PAGE _S
Page !I

OF POOR QUALITY

The evidence flow graph thus provides a unified representation that

can be mapped onto different computer hardware architectures. This

is being investigated as part of an overall research project into

how to build intelligent systems that are able to function in

real-time in uncertain environments. These graphs are also of

value in the validation and verification of expert systems.

Figure 4 depicts the use of flow graphs for performance analysis on

different knowledge representations. An important feature of our

approach is transforming the knowledge representation used into a

graph theoretic form from which it can be analyzed and simulated

using techniques developed for non-linear control systems.

Figure 4: Evidence Flow Graphs as a Unifying Representation

Page 12

3. KNOWLEDGE LEVEL VERIFICATION FOR A RULE-BASED REPRESENTATION

In this grant period we have investigated knowledge level

verification. We have demonstrated our approach using a rule-based

knowledge representation.

rule-base to evidence

program. A third logical

done by hand.

Our system contains two modules: a

flow graph translator and a simulation

module, post-processing, currently is

3.a. The Knowledge

Translator

Representation t__oo Evidence Flow Graph

A translator takes the knowledge representation and yields an

evidence flow graph. The knowledge is in the form of Horn-clause

rules, where the antecedent is a conjunction of predicates and the

consequent is a conclusion. There are specially designated input

predicate nodes and output final conclusion nodes, as well as nodes

for any subconclusions. For each rule there is a directed link

from each of the predicates of the antecedent (input nodes or

subconclusions) to the node of the conclusion or subconclusion in

the consequent, as illustrated in Figure 5a. Weights on the links

are based on the number of conjuncts. When a parameter is referred

to in several relational predicates, there is a directed link from

the parameter to each of the nodes for the relational predicates,

as illustrated in Figure 5b.

OF. POOR Qv,_,L_Ty''_ Page 13

A and B --> C

D and E --> F

F and G --> H

input output

predicates conclusion

Figure 5a: Evidence Flow Gramh Representation for Simple Rules

w > 200 and A --> B W < i00 and C --> D

input

parameter

©
input relational

predicates predicates

Figure 5b: Evidence Flow Graph Representation for Parameter Inputs

Page 14

Conversion of a production rule base into an Evidence Flow Graph

(EFG) is achieved by a translator implemented in LISP on a VAX/VMS

11/750 system.

The translator uses a depth-first strategy on the rule base to

generate the nodes of the graph. Generation begins with the

selection of an arbitrary rule from the rule base. Next, all rules

leading to the same conclusion are collected to form a group. One

conclusion node is created in the graph for each such group. For

every conjunct of each rule in the group, a new node is created if

one does not already exist. This node is treated as the conclusion

node for a new group of rules that have the corresponding conjunct

as their conclusion. Conjuncts that are specified as inputs to a

rule and are mapped to the input nodes of the graph. Conjuncts

which are not conclusions of any rule and which are not specified

as inputs are treated as undefined and are flagged as errors.

Graph generation continues until all conjuncts that appear in the

rule base are mapped to the nodes of the graph.

For every conjunct that includes a logical comparison operator in

its description, two nodes are established. One node is the value

node that models an input node for the input parameter being

compared, while the other is the comparison node that contains the

threshold value against which the parameter value comparison is

performed. A single arc connects the value node to the comparison

node. In order for the comparison node to fire, a message must be

received along this arc. All other conjuncts that perform a

comparison of the same parameter against a different value have a

different comparison node with an arc from the same input parameter

Page 15

node.

The translator combines graph

checking that preceeds the

simulator (section 3.b.).

generation with static rule base

dynamic testing implemented by the

Static checking enables the

identification of those rules that contain undefined conjuncts in

their conditions. In the event of detection of such a rule in the

rule base, the translator logs an error in the error log file

indicating the rule in error along with the conjunct that caused

the error. From then on, the erroneous conjunct is treated as an

input conjunct and graph generation continues as normal. On

completion of graph generation, the translator issues a warning on

the inconsistency of the generated graph arising from the assumed

treatment of undefined conjuncts. Should no errors occur during

graph generation/static checking, the translator outputs the graph

in a canonical form which can then be modified for providing a

formatted input to the simulator.

The reformatting of the translator output is provided to describe

each node completely in the input to the simulator. Each node's

description includes information on the type of node (e.g. input,

output etc), the arc relations (e.g. conjunctive/disjunctive with

respect to other arcs), and a description of each arc (e.g source

node, relative importance of the arc for that node).

Page 16

3.b. The Simulator

A simulator executes the evidence flow graph. All nodes, except

for the input and relational predicate nodes, update with a

weighted sum of the values of their input arcs. When several rules

have the same conclusion, the update values are treated as a queue

which takes the maximum of their input values. For example in

Figure 6, E updates with the maximum of the weighted sums of A & B

and of C & D if both are available, if only one sum is available it

becomes the value of E, and if neither is available E will not be

updated.

A and B --> E

C and D --> E

Figure 6: Several Rules with the Same Conclusion

The update values are sent as messaaes to nodes to which there is a

directed arc. The values are real numbers between 0.0 and 1.0.

For the initial stage of V & V (the knowledge level) it might be

assumed that the work cells (nodes) fire as soon as their inputs

are available and that there is no contention for computing

Page 17

resources. One could then pick processing cell times at random

from a distribution and test for many possible execution sequences.

Simulation continues until all activity ceases in the network.

The motivation for using a 'universal' idealized, environment for

the basis of knowledge level verification is portability and

flexibility, perhaps also contributing to the possibility of

hardware fault tolerance. The data flow-like processing allows one

to consider the knowledge independently of the control strategy,

and reflects inherent parallelism of expression of rules. It is

also possible to verify a knowledge base under a particular control

strategy. For example, a rule firing order mechanism for an

inference engine, like a conflict resolution method, would be

converted into a work cell scheduling mechanism for computing

resources, in this case priorities of node firings.

The formatted output obtained from the translator provides input to

the simulator, which is implemented in SIMSCRIPT II.5 on a

VAX/ULTRIX 11/780 system.

Three major components comprising the simulator are :

(a) Decision Process Nodes

(b) Interconnection Arcs

(c) Communication Messages

Decision process nodes are centers of active decision making in the

evidence flow graph. Broadly they may be classified into four main

categories :

(a) Input nodes

(b) Output nodes

Page 18

(c) Intermediate nodes

(d) Comparison nodes

Input nodes are entry points for symbolic and numeric

flowing into the graph from external environment.

information

These nodes fire

collectively in subsets as explained later in

Information leaving the input nodes appears

intermediate and/or comparison nodes.

this section.

as input to

Intermediate nodes are the centrally located nodes of the graph and

are isolated from external environment by the input/output nodes.

Input to intermediate nodes may appear from input, comparison, or

other intermediate nodes. On collection of enough evidence at the

intermediate node decisions regarding the subsequent flow of

evidence are taken. Evidence flowing out from an intermediate node

is either a confirmation or negation of the evidence arriving at

its input.

Decisions at the graph nodes are conveyed to other nodes through

flow of messages in the graph. No feedback information is made

available at the input of graph nodes.

Comparison nodes are another type of nodes present in the evidence

flow graph. Each comparison node has an arc from a parameter input

node; they handle the flow of numeric evidence into the graph.

Their functional description is provided later in this section.

All types of nodes have certain basic attributes like node-id,

node-type, node-threshold, node-conclusion, and statistical

counters that keep track of node activity in terms of the number of

input messages received and the number of positive/non-positive

Page 19

messages output by the node. Node-id of a node is its

identification in the graph. Behavior of a node (i.e.

taken by a node on its activation) depends on the type

unique

action

of that

node. Input nodes and intermediate nodes send messages to other

nodes with activation values, while the output nodes produce the

final conclusions. Node threshold is a static comparison value

against which total evidence collected at a node is measured. If

the evidence gathered at a node exceeds the firing the threshold,

the node fires a boolean true value, else it fires with a boolean

false value.

At any time during simulation, the nodes are either

state or in a state of hybernation.

another node activates a hybernating node.

checked for message arrivals. Message

in an active

A message arriving from

Input arcs of nodes are

copies are deposited in

input queues of the destination node/nodes specified in the

message. During its activation, a node checks all relevant arcs

for messages. If all conjunctive arcs have messages and at least

one arc in the set of disjunctive arcs has a message, the node

fires. Messages that initiate firing are removed from input queues

and the node subsequently enters a hybernation state. Should the

message requirements at the input arcs be insufficient, the node

enters the hybernation state without firing. The activation

sequence for nodes follows a fixed pattern - input nodes fire

first, followed by the activation of comparison nodes, which in

turn is followed by activation of all other types of nodes in the

flow graph.

Associated with each node are entities called arcs. Incoming

Page 20

messages are buffered in the arcs of a node. An arc may bear a

conjunctive or disjunctive relationship to other incomming arcs of

a node. As mentioned earlier, messages must be received along all

conjunctive arcs and along at least one of the disjunctive arcs,

for a node to fire. Each arc entity has attributes such as source

node, a weight, a type (conjunctive/ disjunctive), and a count of

the messages it receives. The weight of an arc is considered for

determining the the importance of messages that are received along

that arc. In the current system, in the translator the arc weight

is computed by distributing the certainty factor of a node

uniformly over the input arcs. Total evidence collected at a node

is computed by taking the sum of products; each product is of the

message activation level and the weight of the arc along which a

message arrives. For all conjunctive arcs this value is summed,

while for all disunctive arcs the maximum of values over all

disjunctive arcs is selected.

Messages form the communication medium for inter-node

communication. Each message is characterized a value (if the

evidence it carries is a quantifiable numeric quantity), the weight

of the corresponding arc, and a unique message number to uniquely

identify the message in the system. Messages are consumed by a

node on its firing. The output of nodes are messages that carry

evidence representing a combination of evidence brought to a node

by other messages plus the evidence generated at node itself.

The simulator operates in two phases: the setup phase and the

simulation phase. During the setup phase, the description of each

node of the graph is read from an input file and a corresponding

Page 21

node is modelled as follows: if the node is an input node, a

simulation entity modelling the node is created in the input nodes

set. If the node is a non-input node, a process is created for

modelling that node. The process description includes the node's

attributes (e.g. its

(e.g. arcs and their

procedure to simulate

type), node entities and their attributes

relation, relative weight etc.), and a

its action on activation. For each such

process created, a process notice is placed in the future events

set of the simulator, which works like a queue. For

value-comparison nodes, two nodes are modelled in the simulator:

The parameter value node is placed in the input nodes set, while

the comparison node is associated with a process notice in the

future events set. Process notices for all non-input nodes are

scheduled to execute at the instant they are examined by the

simulator. This immediate execution property of the co-routining

node processes implements the inherent parallel exection model of

the Evidence Flow Graph.

The simulation phase is made up of

simulation cycles. Each simulation

selection of collective subsets of inputs

an arbitrary number of

cycle corresponds to a

in a way that allows

inclusion of all input nodes in the set formed from the union of

these subsets. Thus all input nodes are activated once in every

simulation cycle in some permutation and combination of the inputs.

At the start of the simulation phase, a random subset of inputs is

generated and each input node is randomly assigned a boolean firing

level. All process notices pending in the future events set are

examined and their associated actions are executed.

Page 22

The actions specified for intermediate nodes are as follows:

verify that at least one message is queued in the buffer of every

arc of a conjunction of input arcs and at least one message is

queued in at least one of the arcs of every disjunctive set of

input arcs. If all appropriate arcs have messages present in their

buffers, compute the combined measure of evidence collected at this

node. Check this measure against the node threshold, fire the node

with a boolean value and delete all messages that contributed to

current node firing. Firing of a node is equivalent to generating

a new message and scheduling a corresponding process notice in the

future events set with a priority of execution higher than the

priority of execution of node process notices. Once a node has

fired its execution is suspended. If, on the other hand, there are

not enough messages received on appropriate arcs, then simply

suspend execution of the node process.

The action sequence specified for output node processes is simpler.

An output node qualifies for firing in the same way as an

intermediate node does. If an output node qualifies for firing,

then output the conclusion reached and suspend execution, else

suspend the node process and continue with the current simulation

cycle. During the exection of a message process notice mentioned

in the action sequence outlined above, the action taken is to

resume and reschedule all supended node processes, followed by

storing messages in input buffers of arcs of every destination node

in the future events set for which the message is intended.

On completion of a simulation cycle, the buffers of all arcs in the

graph are cleared of any pending messages for a new subsequent

Page 23

simulation cycle. Simulation cycles are repeated until

expiration of the user-specified duration of simulation.

the

3.c. The Post-Processor

The pattern of node firings (and message passings) is recorded in a

logfile. A post-processor can then do various analyses on this

file, for example to determine nodes that have never fired or nodes

that have fired very often. It can be suggested that the rules

corresponding to these nodes warrant additional scrutiny. The

post-processor also can compile results from multiple runs with the

same input, perhaps available at different times, so we can compare

results from different input orderings and with different node

firing orders to see if the results are always the same. In other

words, the output of the post-processor will allow the

identification of invariance of results with different input

orderings, with different firing orders, as well as with parameter

variation.

4. KINDS OF TESTING

A variety of different kinds of testing are supported by this

approach. The most common type of checking done on expert systems

is for consistency (SUW82,NGY85,NGY87,STA87). Static analysis on

the evidence flow graph can yield this kind of information. In

fact, several systems which do consistency checking translate a

rule base into a inference net or graph for their analysis

(STA87,BEL87). Such a graph structure could also be used to derive

or generate sets of inputs for structural testing, if desired

Page 24

(STA87). We concentrate here on the kinds of dynamic testing which

can be done using simulation.

If there are available test cases which specify the conclusion to

be reached for a set of inputs these can be run and wrong

conclusions can be detected. This kind of testing can also be

readily done by running the expert system itself, but there may be

significant difficulty in assembling a large, well distributed set

of test cases (OKE86). With the proposed method there are a number

of kinds of testing which do NOT require the availability of test

cases. All these involve running multiple simulations with

randomly generated inputs values within the operational profile.

One type of testing which is very significant which does not

require knowing the desired conclusion for a set of input values is

testing whether the same conclusion will be reached regardless of

the order that the input values become available. This is relevant

when the system acts on the basis of the first conclusion reached.

For a given set of input values multiple runs are made with

different orderings of various subsets of the inputs.

For sensitivity testing the values of parameters are randomly

varied within their operational profiles to determine whether any

parameter is critical in its effect on the input, i.e. small

changes in its value cause changes in the output. The effects of

different degrees of belief of input predicates can also be

examined. The evidence flow graph can be partitioned to allow this

testing to be carried out on only the relevant subset of nodes.

For some applications it may be possible or necessary to specify

Page 25

critical conclusions that are to be reached only under certain

conditions or are not to be reached under certain conditions.

These specifications can be tested using multiple simulations with

randomly generated inputs. Here it is critical to partition the

evidence flow graph to allow more exhaustive testing.

5. RESULTS OF THE PROJECT

At present a prototype rule base to evidence flow graph translator

has been completed; this is written in LISP. Simulation programs

to run an evidence flow graph with varying input values and

ordering has been completed; this is written in SIMSCRIPT. A rule

base for a small expert system has been identified. It has been

translated into an evidence flow graph, and the simulation programs

have been used to run the network. In addition, we have inserted

errors into the sample rule base and demonstrated the kinds of

errors that the proposed approach can detect. This is discussed

below.

Appendix 1 is the sample rule base. Appendix 2 is the evidence

flow graph representation that was generated from this rule base by

the graph generator. Appendix 3 is the symbolic representation of

this evidence flow graph. This evidence flow graph representation

is now described in detail. All the INPUT NODES except for AGE and

LENGTH are predicates; their input values will be truth values (i

is true and 0 is false, and values between i and 0 indicate degree

of belief). AGE and LENGTH are parameter inputs. They are input

as real values, and the functions in their corresponding

COMPARISON NODES return true values (between 1.0 and 0.0).

Page 26

The OTHERNODEScorrespond to conclusions, i.e. RHS's of rules.

The OTHER_NODES which begin with an * are final conclusions. In

each OTHER NODE following the node number, conclusion, and

certainty factor, there is a list of nodes which correspond to the

conjuncts on the LHS of the rule.

The nodes for the conjuncts may be either INPUT NODES,

COMPARISON NODES or other OTHER NODES. Following the number of the

conjunct node there is a real number between 0.0 and 1.0. This

stands for the 'weight' on the link from the conjunct's node to the

conclusion node. The OTHER NODES are updated with a weighted sum.

The value of each conjunct node is multiplied by its weight and

these products are added together.

In node 24 for 'mammal,' the second element in the conjunct list

consists of two nodes; these two nodes correspond to the second

conjunct in the rule for 'mammal' in EX.I. The second conjunct in

the rule was 'animal', and there were two rules with 'animal' as a

conclusion, as there are two OTHER NODES (4 and 6) with 'animal' as

a conclusion. These two nodes are connected to node 24 by an

OR-connection. The value of an OR-connection used for updating is

the maximum value of the nodes which have so far send values to the

updating node. For this rule base there are no ELSE NODES, which

are created for if-then-else rules. There are also no NOT NODES,

which are used when a negated predicate is a conjunct in the LHS of

a rule; the same predicate can thus be referred to positively and

negatively in different rules.

The errors that can be detected by our techniques can be divided

Page 27

into three classes:

i. sensitivity (over-sensitivity) of the conclusion reached

to input parameters,

2. reaching different conclusions from one set of input values, and

3. errors which other researchers have detected using analytic

methods but which may also be detected using our techniques.

Appendix 4 is a sample run with the input values on the right. The

input values are randomly generated. For this run the conclusion

'ostrich' was reached. For sensitivity testing of the parameter

inputs (class 1 above), the values of the other inputs may be held

constant while just the parameters are varied. Alternatively a

post-processor could take the results of the randomly generated

input values, group together those which differ only in a parameter

input, and perform analysis on the groups.

For a given set of rules, it possible that several conclusions can

be reached from a single set of input values. This may be

undesirable when an action is to be taken on the basis of the first

conclusion reached and when the input values become available

dynamically, i.e. not simultaneously. The simulation program also

runs in a dynamic mode. This is illustrated in appendices 5, 6, 7.

Appendices 6, 7, and 8 will be used to present an example of the

second class of errors.

As appendix 5 shows, the rule base represented by the graph can be

run with just a subset of the input values, and additional subsets

until all the values have been input or a conclusion is reached.

If simulation with a subset of input values reaches a conclusion,

no additional subsets are run. This is what has occurred in

appendices 6 and 7. The input values for these two runs are both

Page 28

subsets of those in appendix 8. In the runs in appendices 6 and 7,

different conclusions have been reached based on the order in which

the input values in appendix 8 have become available. This is an

example of the second class of errors.

Appendix 9 gives several rules which were added to the original

rule base. These will be used to illustrate the capabilities of

the system for identifying the third class of errors, those which

other researchers have detected using analytic methods but which

may also be detected using our techniques.

The last rule was identified as problematic during the translation

process which generates the graph. This is an example of an error

in which an antecedent conjunct in the LHS of some rule is neither

an input, nor an conclusion of

'killshuman' is not parenthesized

intermediate conclusion; however,

some other rule. The conjunct

and therefore indicates an

there is no rule which has

'killshuman' as its RHS. Such an error might have many 'sources'

For example, the conjunct could have been misspelled in either the

LHS or the RHS of some rule, or the rule which concludes this

conjunct could have been omitted, or it may have been intended that

this conjunct be an input.

Appendix i0 illustrates the data on message arrivals which is

stored for each node. Appendix ii is a frequency of node firings

report for the graph generated from the rules in appendix 1 with

the rule for 'human' replaced by the one in appendix 9 and the rule

for 'man' from appendix 9 added. The nodes which never fired

positively should be examined more fully. This does not

Page 29

necessarily indicate a problem, at least for the number of runs

done, but it points to situations which bear greater scrutiny. For

example, the conclusions 'shark' and 'ape' were never reached, but

there is nothing wrong with the rules that lead to them. On the

other hand, the conclusions 'man' and 'human' from the first two

additional rules in appendix 5 also never were reached, and closer

scrutiny indicates that these rules were circular, each requiring

the other conclusion to be reached. Another possible cause for a

conclusion never being reached would be if the rules leading to it

were directly contradictory. For example, if the same predicate

were used positively in the LHS of an intermediate conclusion A,

and negatively in the LHS of an intermediate conclusion B, and the

rule with C in its RHS had A and B in its LHS. Conclusion C would

also be unreachable if A and B referred to mutually exclusive

comparison. Running multiple simulations identifies the rules that

bear greater scrutiny.

Appendix 12 is a subset of the graph in appendix 3. The original

graph was partitioned, and appendix 8 contains only the nodes

corresponding to the rules that can be used to lead to the

conclusion 'ape' The smaller graphs created by partitioning allow

more simulations to be run in a given amount of time. They can be

used for conclusions of particular interest, perhaps those which

are only to be reached under certain conditions.

6. CONCLUSIONS

It has been shown that Evidence Flow Graph methods can be used to

detect errors and inconsistancies in expert systems. This has been

Page 30

demonstrated experimentally by taking an existing rule base and

converting it automatically to an evidence flow graph. This flow

graph was then used as the input to a simulation program which

predicted the performance of the expert system under a variety of

conditions. Faults were detected during the translation process

and as a result of simulation runs.

The techniques developed were general in nature and have a number

of advantages over other techniques for detecting problems as part

of the validation and verification process:

a) It provides a uniform representation for various

knowledge representations and control strategies.

b) The evidence flow graph allows for analysis to

recognize unused inputs and subconclusions,

unreachable conclusions, disjoint and hence

partitionable subgraphs, and relationships between

inputs and outputs. It also provides a visually

comprehensible representation in which many of these

can be readily recognized.

It allows for simulation using techniques developed

for non-linear stochastic systems.

d It allows the consideration of different orders

of input availability, and potentially for multiple

data values for a single parameter.

e It allows for sensitivity testing to determine where

small changes in the values of input parameters

Page 31

will result in different conclusions.

It was concluded that evidence flow graph techniques do have a role

to play in performing sensitivity analyses as part of the

validation and verification process for expert systems. More work,

however, needs to be done to make these techniques practically

useful. Some of the major future activities needed are:

i) The development of a program that will automatically develop

simulation test sequences based on meta-knowledge about such items

as possible ranges of input data and order of data availability.

2) The development of a program to automatically analyze the output

data from the simulation runs and to detect problems. The

simulation program generates a large volume of data when performing

monte-carlo analyses which it is not practical to examine by hand.

This post processing program will need to embody knowledge about

fua!ts that could occur and how to detect them.

3) Further development of techniques to partition flow graphs so as

to reduce the search space for faults.

4) Expansion of the translation program so as to be able to handle

more complex knowledge forms and to translate these into evidence

flow graphs.

This past year we have made a successful start on techniques which

can be used for the verification and validation of expert systems.

The work described in this report has hopefully laid some of the

foundation which can be used to assure that the expert systems used

in our space program are reliable and safe.

Appendix i: Sample Rule Base

LHS*

(

(((has skin) (moves around) (breathes))

(((moves around) (breathes) (eats))

((animal (has fins) (can swim))

(((bites) (length > 5) fish)

(((edible) fish)

(((has wings) animal)

((bird (can_fly))

((bird (long_legs))

(((warm_blooded) animal (suckles_young))

((mammal (talks) (age < I00))

(((lives on trees) (age < i00) mammal)

)

Page 32

RHS CF

animal .9)

animal .9)

fish .9)

shark .9)

salmon .9)

bird .9)

canary .9)

ostrich .9)

mammal .9)

human .9)

ape .9)

*The conjuncts are enclosed in parentheses, if they are input

predicates, but not if they are inferred predicates, i.e. those

on the RHS of some rule.

Page 33

Appendix 2: Evidence Flow Graph Representation of the Rule Base

',, T._ Its ,

(a,]e .,

k

""_'%--'< .."

(warm _.
'-_,J e,:,,]_._--

(" r c,urld ".

(4-ong-t-e_.%;

(. Car_ly)

/

/

\

i

P_,re-_F.I'_÷5 ,----

,." _--_i---.--,_ ".'.

i

_, E:3r.E

," L :]rl -

t.. S w 1l.N _......,'_,

t,Hd ?_i iN'.:. '1

..::- --.-.'..L
_, 8(tes J

(Lengct_

/

\ Edible)

°." °.

"-i ': 100

/.,l i l [.[_i 0 [

L L

:5

An lmal

Mamma I

B ird

Fish

_;'H'o -"i
r_an

]-' p_.)

/_str_
_cn ,;

/
/

/
/

_o

\
\

\.

A: "

Fage 34

Appendix 3: Symbolic Representation of the Evidence Flow Graph

(INPUT NODES

(29 (LIVES ON TREES))

(26 (AGE))

(25 (TALKS))

(23 (SUCKLES YOUNG))

(22 (LONG LEGS))

(18 (CAN VLY))

(16 (HAS WINGS))

(14 (EDIBLE))

(ii (LENGTH))

(i0 (BITES))

(8 (CAN SWIM))

(7 (HAS--FINS))

(5 (EATS))

(3 (BREATHES))

(2 (MOVES AROUND))

(1 (HAS SKIN))

(OTHER NODES

(* (30 APE 0.9 (((29

(* (28 HUMAN 0.9 (((24

((24 MAMMAL 0.9 (((22

(* (21 OSTRICH 0.9 (((17

(* (19 CANARY 0.9 (((17

((17 BIRD 0.9 (((16

(* (15 SALMON 0.9 (((14

(* (13 SHARK 0.9 (((i0

((9 FISH 0.9 (((6

((6 ANIMAL 0.9 (((2

((4 ANIMAL 0.9 (((i

(COMPARISON NODES

(27 (AGE <) 1

(12 (LENGTH >) 1

0 3))

0 3))

0 3))

0 45))

0 45))

0 45))

0.45))
0.3))

0.3)(4

0.3))

O.3))

0.3))
((3 0.3
((2 O.3

(((26

(((ii

i)))))
i)))))

27 0.3))

25 0.3))

6 0.3)(4

20 O.45)))))

18 0.45)))))

6 0.45)(4

9 0.45)))))
12 O.3))
7 0.3))

((5
((3

((24

((27

0.3))

0.3)))))

0.3)))))
((23 0.3)

0.45)))))

((
((8

0.3)))

0.3))>

9 0.3)))))
0.3)))))
)
)

ELSE NODES)

(NOT NODES)

Appendix 4:

NODE

Initial node firings:

25 talks

22 warm blooded

20 long legs

18 can fly

16 has_wings

5 eats

3 breathes

29 lives on trees

26 age

23 sucklesyoung

14 edible

ii length

i0 bites

8 can swim

7 has fins

1 has skin

2 moves around

Sample Run 1

VALUE FIRED

0

0

1

0

1

1

1

0

46.38 1

1

0

4.90 1

0

1

1

0

1

Page 35

Conclusion:

THERE IS ENOUGH EVIDENCE (0.90) TO SUGGEST THAT ostrich

Page 36

Appendix 5: Sample Run 2

NODE VALUE FIRED

Initial node firings:

26 age 198.56 1

25 talks 0

20 long legs 1

18 can fly 0

23 suckles_young 0

14 edible 0

Ii length 6.93 1

8 can swim 1

29 lives on trees 1

Additional Node Firings:

22 warm blooded 0

7 has fins 1

5 eats 1

1 has skin 1

Additional Node Firings:

16 has wings 1

2 moves around 1

Additional Node Firings:

i0 bites 0

3 breathes 1

Additional Node Firings:

Input nodes exhaused

>>>>>>>INSUFFICIENT EVIDENCE FOR REACHING ANY CONCLUSION<<<<<<<

Page 37

Appendix 6: Sample Run 4

NODE

Initial node firings:

1 has skin

2 moves around

25 talks

22 warm blooded

ii length

20 long_legs

16 has wings

5 eats

3 breathes

29 lives on trees

Conclusion:

THERE IS ENOUGHEVIDENCE (

VALUE FIRED

0

1

0

0

4.90 1

1

1

1

1

1

0.90) TO SUGGEST THAT ostrich

Appendix 7: Sample Run 5

Page 38

NODE

Initial node firings:

VALUE FIRED

10 bites

8 can swim

22 warm blooded

18 can fly

16 has_wings

2 moves around

5 eats

3 breathes

26 age

23 suckles_young

46.38

0

0

0

1

1

1

1

1

1

1

Conclusion:

THERE IS ENOUGH EVIDENCE (0.90) TO SUGGEST THAT canary

Appendix 8:

NODE

Initial node firings:

25 talks

22 warm blooded

20 long_legs

18 can fly

16 haswings

5 eats

3 breathes

29 lives on trees

26 age

23 suckles_young

14 edible

ii length

I0 bites

8 can swim

7 has fins

1 has skin

2 moves around

Sample Run 3

VALUE FIRED

0

0

1

1

1

1

1

1

46.38 1

1

0

4 .90 1

0

0

0

0

1

Page 39

Conclusion:

THERE IS ENOUGH EVIDENCE (

Conclusion:

THERE IS ENOUGH EVIDENCE (

0.90) TO SUGGEST THAT ostrich

0.90) TO SUGGEST THAT canary

Page 40

Appendix 9: Some Additional Rules

(((has beard) human)

((man (eats) (can sing))

((ape kills humans (moves around))

man

human

monster

.99)

.99)

.9

Page 41

Appendix 10: DETAILS OF MESSAGEARRIVALS ON NODE 9

NODECONCLUSION : fish

SOURCE SOURCE ARC NUMBER

NODE CONCLUSION TYPE MESSAGES

6 animal or 201

4 animal or 201

7 has fins and 196

8 can swim and 201

Page 42

Appendix ii: Frequency of Node Firings Report

NODE#

33
31
29
26
25
23
22
20
18
16
14
ii
i0

8
7
5
3
2
I

27
12
30
28
24
17

9
6
4

34
21
19
15
13

NODECONCLUSION ZERO NON-ZERO TOTAL

lives on trees 46 50 96
can_s_ng-- 48 48 96
has_beard 57 36 93
age 52 43 95
talks 46 50 96
suckles_young 52 42 94
warm-blooded 42 54 96
long legs 45 51 96
can fly 53 43 96
has-wings 51 45 96
edible 40 55 95
length 46 47 93
bites 48 48 96
can swim 42 54 96
has fins 51 45 96
eats 50 47 97
breathes 44 53 97
moves around 47 50 97
has s_in 48 46 94

age < i00 73 22 95

length > 5 65 28 93

man 92 0 92

human 93 0 92

mammal 91 2 93

bird 87 9 96

fish 93 2 95

animal 82 15 97

animal 82 12 94

ape 92 0 92

ostrich 91 5 96

canary 90 5 95

salmon 93 2 95

shark 92 0 92

Page 43

Appendix 12: Partitioned Graph for Output 'APE'

(

(INPUT NODES

(23 (SUCKLES YOUNG)

(1 (HAS SKIN))

(5 (EATS))

(3 (BREATHES))

(2 (MOVES AROUND))

(22 (LONG LEGS))

(26 (AGE))
(29 (LIVES_ON_TREES

)

(OTHER NODES

(* (30 APE 0.9

((4 ANIMAL 0.9

((6 ANIMAL 0.9

((24 MAMMAL 0.9

(COMPARISON_NODES

((27

)

(AGE <

(ELSE NODES)

(NOT NODES)

((29
((i

((2
((22

1

0.3

0.3)
0.3)

0.3

(((26 I

((6

)))

((27
((2
((3

0.3)

0.3))
0.3))

0.3))
4 0.3)) ((23

((24 0.3)))))
((3 0.3)))))
((5 0.3)))))

0.3)))))

Page 44

References

Ackerman, W.B. 1982. Data Flow Languages. IEEE Computer 15.2:
15-25.

Bellman, K. and Walter, D.O. 1987. Testing Rule-based Expert

Systems. (Personal Communcation).

Chisvin, L. 1988. Using Discrete Event Simulation to Predict the

Network Communication Performance of Messa@e-Based Data FTow

MultiDrocessor Systems. Master's The--{is, Worcester P_ec n_

Institute, Worcester, MA.

Green, P.G. and W.R. Michalson. 1987. Real-Time Evidential

Reasoning and Network Based Processing. Proceedings of the IEEE
First Annual International Conference on Neural Networks_--VoT. --_,

pp. 359-365.

Johnson, S. 1988. Validation of Highly Reliable, Real-Time

Knowledge-Based Systems. Proceedings of the 2nd Annual Workshop on

Space Operations Automation and Robotics (SOAR 88).

Michalson, W.R., Green, P.E., Duckworth, R.J. 1987. Evidence Flow

Graphs: A Unified Representation for Distributed Artificial

Intelligence Systems. Worcester Polytechnic Institute Report
EE87IMPI0.

Michalson, W.R. 1988. A

Decision Making. Ph.D.

Institute, Worcester, MA.

Computing Architecture for Real-Time

Dissertation, Worcester Polytechnic

Nguyen, T.A., Perkins, W.A., Laffey, T.J. and Pecora, D. 1985.

Checking an expert system knowledce base for consistency and

completeness. IJCAI9, pp. 376-378.

Nguyen, T.A., Perkins, W.A., Laffey, T.J. and Pecora, D. 1987.

Knowledge base verification. AI Magazine, Vol.8, No.2.,
65-79.

Law, A.M. and Larmey, C.S. 1984. An Introduction to Simulation

Using SIMSCRIPT II.5. O'Keefe, R.M., Balci, O., an--d Smith, E.P.

1987. Validating Expert System Performance. IEEE Expert, Vol.2,

No.4., pp. 81-89.

Russell, E.C. 1983. Building Models wi___t_ Simscript II.5. CACI,
Inc., Los Angeles, CA.

Stachowitz, R.A., Chang, C.L., Stock, T.S., and Combs, J.B. 1987.

Building Validation Tools for Knowledge-Based Systems. Proceedings

of the First Annual Workshop on Sa_S_ Operations Automation and

Robotics (SOAR 787), pp. -209-215, NASA Conference Publicatz_o-6

2491, Houston, TX., August 1987.

Page 45

Suwa, M., Scott, A.C. and Shortliffe, E.H. 1982.
verifying completeness and consistency in a
system. A__IMagazine , Vol.3, No.4, pp. 16-21.

An approach to

rule-based expert

